Critical role of increased PTEN nuclear translocation in excitotoxic and ischemic neuronal injuries.
نویسندگان
چکیده
Stroke is the leading cause of disability in developed countries. However, no treatment is available beyond 3 h post-ictus. Here, we report that nuclear translocation of PTEN (phosphatase and tensin homolog deleted on chromosome TEN) is a delayed step causatively leading to excitotoxic (in vitro) and ischemic (in vivo) neuronal injuries. We found that excitotoxic stimulation of N-methyl-d-aspartate (NMDA) resulted in PTEN nuclear translocation in cultured neurons, a process requiring mono-ubiquitination at the lysine 13 residue (K13), as the translocation was prevented by mutation of K13 or a short interfering peptide (Tat-K13) that flanks the K13 residue. More importantly, using a rat model of focal ischemia, we demonstrated that systemic application of Tat-K13, even 6 h after stroke, not only reduced ischemia-induced PTEN nuclear translocation, but also strongly protected against ischemic brain damage. Our study suggests that inhibition of PTEN nuclear translocation may represent a novel after stroke therapy.
منابع مشابه
Change of Nurr1 expression in mouse hippocampal CA3 region following excitotoxic neuronal damage
Objective(s): Nuclear receptor-related protein 1 (Nurr1), one of immediate-early genes, is a member of orphan nuclear receptor family. The aim of this study was to investigate the time-dependent change of Nurr1 protein expression in the mouse hippocampal CA3 region following kainic acid (KA)-induced excitotoxic neuronal damage.Materials and Methods:</...
متن کاملDifferential expression of PTEN in normal adult rat brain and upregulation of PTEN and p-Akt in the ischemic cerebral cortex.
The tumor suppressor phosphatase and tensin homologue (PTEN) is a protein and lipid phosphatase. PTEN mutations have been associated with a large number of human cancers. To understand the physiological role of PTEN in the brain and its relationship to Akt in ischemic injury, we first investigated the localization of PTEN immunoreactivity in the brains of normal adult rats using immunohistochem...
متن کاملL-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat
Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all. Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...
متن کاملAMPAergic mechanisms linked to cerebral ischemia
Brain ischemia is the most common cause of invalidity in adults and consequently of death throughout the world. This phenomenon occurs when blood flow is reduced or interrupted in the various brain districts leading to oxygen and glucose deprivation (OGD), which by triggering an intricate succession of biochemical plus molecular events such as an increased production of oxidized and misfolded p...
متن کاملPilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms
The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 18 شماره
صفحات -
تاریخ انتشار 2013